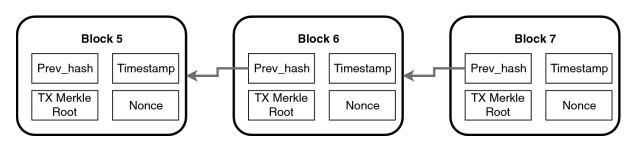


Bitcoin基础:数据结构

中山大学 计算机学院

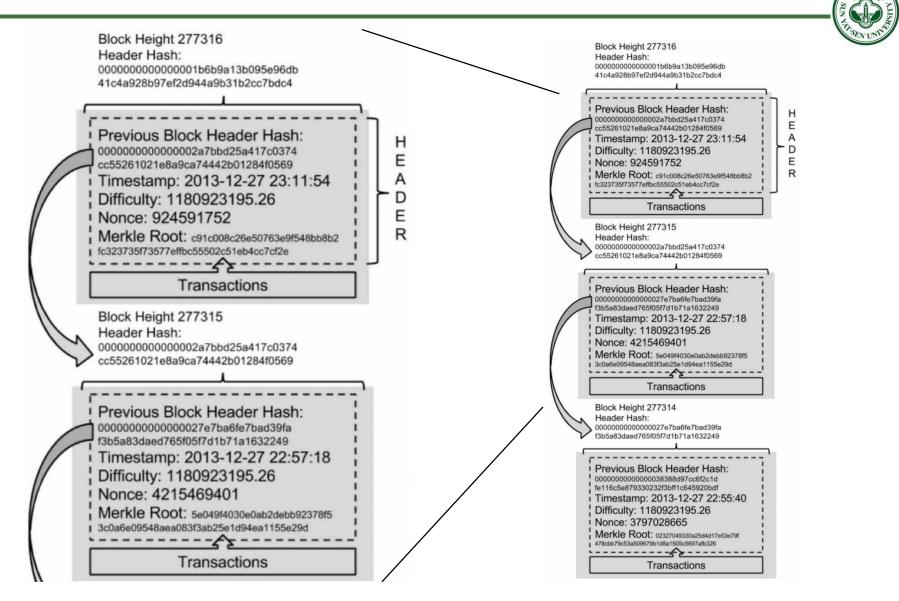
Outline & Keywords of this Class

Part 1: Hash Pointer

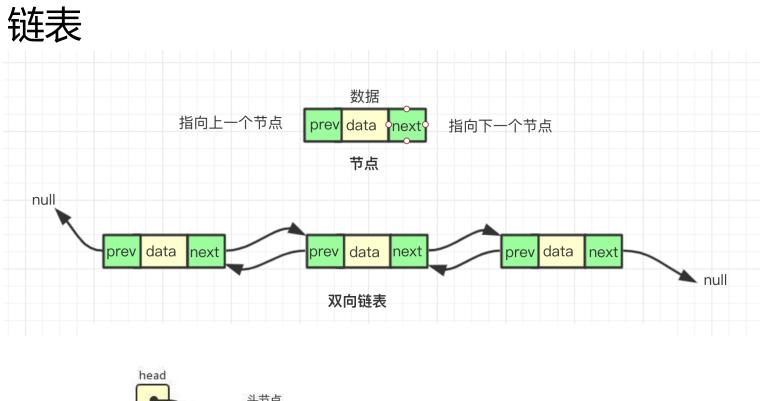

Part 2: Merkel Tree

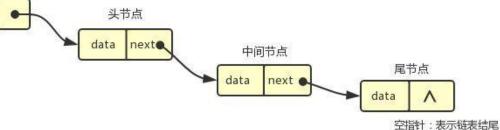
Part 3: A Bitcoin Block

Intro: What are there inside a block?



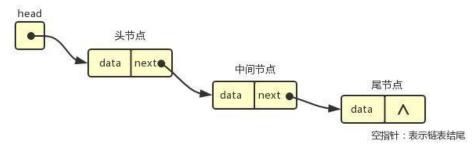
Data Structure of a Bitcoin Block

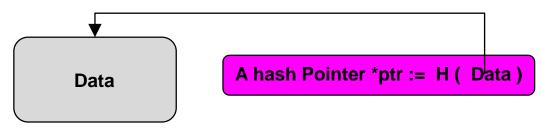



Size	Field	Description				
4 bytes	Version	A version number to track software/protocol upgrades				
32 bytes	Previous Block Hash	A reference to the hash of the previous (parent) block in the chain				
32 bytes	Merkle Root	A hash of the root of the merkle tree of this block's transactions				
4 bytes	Timestamp	The approximate creation time of this block (seconds from Unix Epoch)				
4 bytes	Difficulty Target	The proof-of-work algorithm difficulty target for this block				
4 bytes	Nonce	A counter used for the proof-of-work algorithm				

Intro: Blockchain structure (Antonopoulos, 2014)

Revisit: Data Link Tables

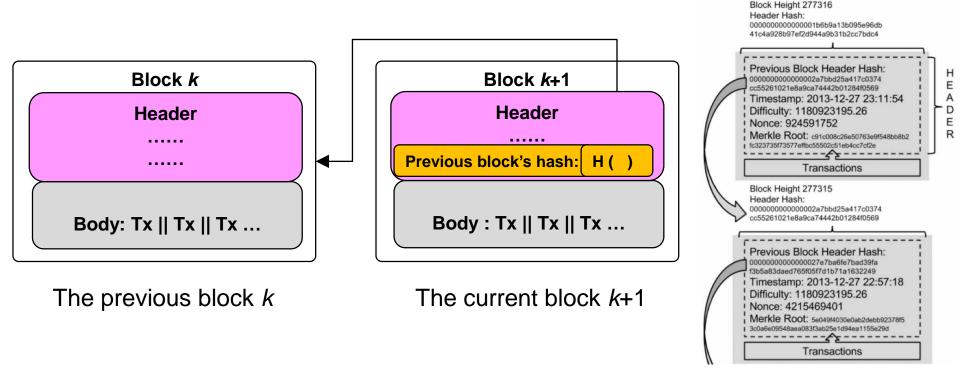



A normal pointer: *ptr = & data

- Tells you the position where a data is

A Hash Pointer: *ptr = H(Data)

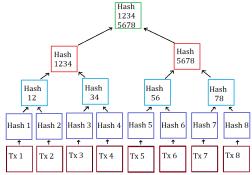
- Not only tells you where a data is
- But also enables you to verify whether such data has been tampered or not



A blockchain == blocks + chains

How to compute a hash pointer in bitcoin?

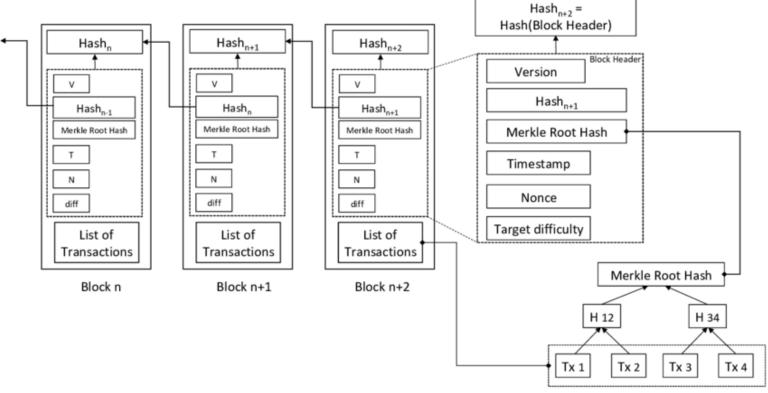
- hash pointer := H(header || body) ?
- hash pointer := H(header) ?


Part 2: Merkle Tree

NOT Angela Merkel + tree

Ralph Merkle

Proposed in 1979, by Ralph Merkle



Definition of Merkle Tree

使用哈希指针的二叉树 —— Merkle Tree

The Merkle tree is a way of structuring large amounts of data in the form of hashes, and representing that data with a single hash.

Block n+2 Transactions

Where is a Merkle Tree in Bitcoin?

Merkle tree's position

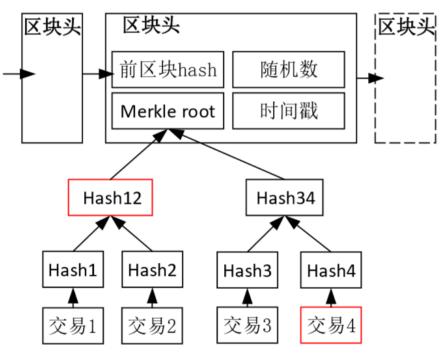
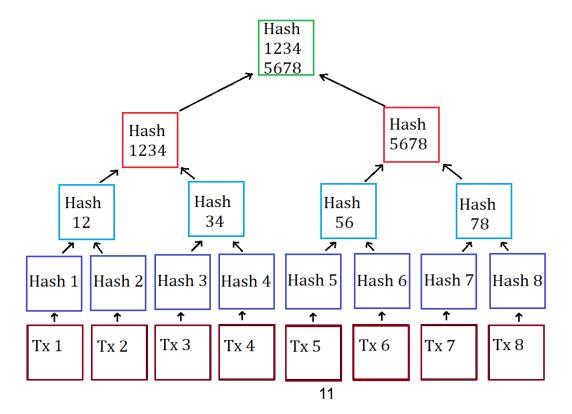


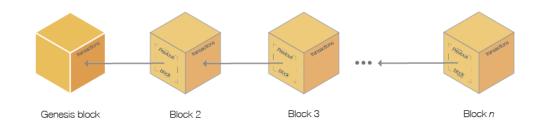
Fig. 2 Bitcoin blockchain data structructure


图 2 比特币区块链结构

What can Merkel Tree do in Bitcoin?

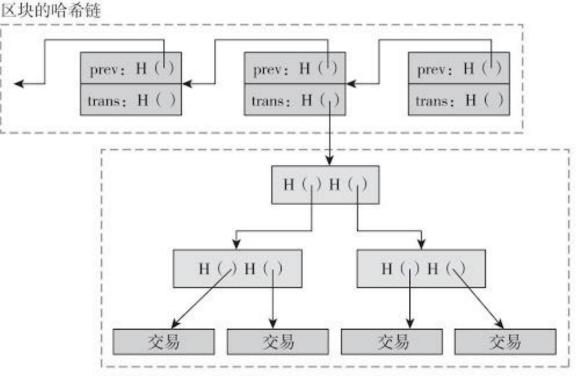
Merkle root hash (32 Bytes)

- The hash of the Merkle Tree root of all transactions in the block.
- If any transaction is changed, removed, or reordered, it will change the merkle root hash.
- This is what locks all of the transactions in the block.



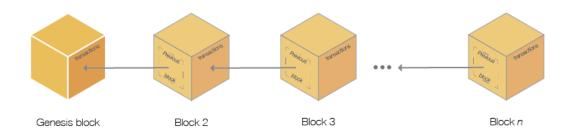
A Question: 为何区块链可以防篡改?

Why would we say that blockchain can prevent the ledger data from tampering?


- Ledger is with the *append-only* property
- If someone modifies any part in previous blocks, we know it immediately. Why?
- 篡改会顺着链传导 (图示: 2个维度)

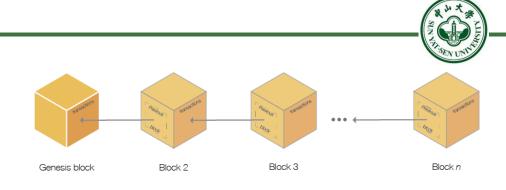
Two types of hash in Bitcoin Blockchain

- #1: hash chains
- #2: hashes in Merkle Tree inside each block body

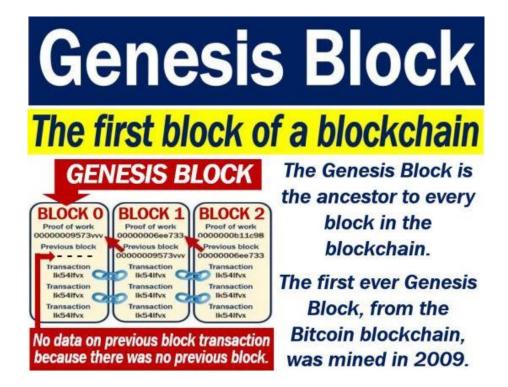

每个区块中各笔交易的哈希树(梅克尔树)

A Question: 为何区块链可以防篡改?

N.N.Y. SAVUTUT


When an attacker tries to tamper a block data (e.g., a Tx)

- He may try to keep changing the previous hash pointers
- Can he make it?
 - No, because we have the Genesis block


Genesis Block

The first block in any blockchain is termed the genesis block.

If you start at any block and follow the chain backwards chronologically, you will arrive at the genesis block.

The genesis block is statically encoded within the client software, that it cannot be changed.

Every node can identify the genesis block's hash and structure, the fixed time of creation, and the single transaction within it.

Thus, every node has a secure "root", from which it is possible to build a trusted blockchain.

RAW HEX VERSION **BITCOIN GENESIS BLOCK**

00000000	01	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000010	00	00	00	00	00		10.00	1.2	00	00	00	107173	00	100	00		
00000020	00	00		00		A3							7A				;£íýz{.²zC,>
		1.1	1.1	1000	100		1007		ALC R	6177	100	100	1000		1000	1.1	
00000030	67	76	8F	61	7F	C8	18	C3	88	8A	51	32	3A	9F	B 8	AA	gv.a.È.Ā^ŠQ2:Ÿ,ª
00000040	4B	1E	5E	4A	29	AB	5F	49	FF	FF	00	10	10	AC	2B	7C	K.^J)«_Iÿÿ¬+
00000050	01	01	00	00	00	01	00	00	00	00	00	00	00	00	00	00	
00000060	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	· · · · · · · · · · · · · · · · · · ·
00000070	00	00	00	00	00	00	FF	FF	FF	FF	4D	04	FF	FF	00	10	ÿÿÿÿM.ÿÿ
00000080	01	04	45	54	68	65	20	54	69	6D	65	73	20	30	33	2F	EThe Times 03/
00000090	4A	61	6E	2F	32	30	30	39	20	43	68	61	6E	63	65	6C	Jan/2009 Chancel
000000A0	6C	6F	72	20	6F	6E	20	62	72	69	6E	6B	20	6F	66	20	lor on brink of
000000B0	73	65	63	6F	6E	64	20	62	61	69	6C	6F	75	74	20	66	second bailout f
00000000	6F	72	20	62	61	6E	6B	73	FF	FF	FF	FF	01	00	F2	05	or banksÿÿÿÿò.
00000000	2A	01	00	00	00	43	41	04	67	8A	FD	B0	FE	55	48	27	*CA.gŠý°þUH'
000000E0	19	67	F1	A6	71	30	B7	10	5C	D6	A8	28	EO	39	09	A6	.gñ¦q0\Ö"(à9.
000000F0	79	62	EO	EA	1F	61	DE	B6	49	F6	BC	3F	4C	EF	38	C4	ybàê.ab¶Iö½?Lï8Ä
00000100	F3	55	04	E5	1E	C1	12	DE	5C	38	4D	F7	BA	0B	8D	57	óU.å.Á.⊅\8M+♀W
00000110	8A	4C	70	2B	6B	F1	1D	5F	AC	00	00	00	00				ŠLp+kñ¬

The Times 03/Jan/2009 **Chancellor on** brink of second bailout (拯救) for banks.

What does it look exactly?

– {block header} {transactions}

What components?

- Block Header: {version 4B} {previous block hash 32B} {merkle root hash 32B} {time 4B}{bits 4B} {nonce 4B}
- Transactions: a bunch of TXs

Block Head	Size	Field	Description						
DIUCK IICAU		Version	A version number to track software/protocol upgrades						
	32 bytes	Previous Block Hash	A reference to the hash of the previous (parent) block in the chain						
	32 bytes	Merkle Root	A hash of the root of the merkle tree of this block's transactions						
• version — 010000		Timestamp	The approximate creation time of this block (seconds from Unix Epoch)						
 previous block ha 000000000000000000000000000000000000		Difficulty Target	The proof-of-work algorithm difficulty target for this block						
• merkle root hash	4 bytes	Nonce	A counter used for the proof-of-work algorithm						

3ba3edfd7a7b12b27ac72c3e67768f617fc81bc3888a51323a9fb8aa4b1e5e4a

- time dae5494d (1296688602 Wednesday, February 2, 2011 11:16:42 PM GMT)
- bits —

• **nonce** — 02000000 (decimal 2)

Hash Pointer

Merkle Tree

What is inside a Bitcoin's block